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ABSTRACT

High dynamic range imaging requires fusing a set of low dy-
namic range (LDR) images at different exposure levels. Exist-
ing works combine the LDRs by either assigning each LDR
a weighting map based on texture metrics at the pixel level
or transferring the images into semantic space at the feature
level while neglecting the fact that both texture calibration
and semantic consistency are required. In this paper, we pro-
pose a novel encoder-decoder network consisting of a con-
tent prior guided (CPG) encoder and a detail prior guided
(DPG) decoder for fusing the images at both the pixel level
and feature level. Explicitly, the encoder constructed by the
CPG layers includes the pyramid content prior to blend at the
pixel level to transform the feature maps in the encoding lay-
ers. Correspondingly, the decoder comprises the DPG layers
incorporated with the Laplacian pyramid detail prior to fur-
ther boost the fusion performance. As the content and the
detail priors are added to the network in a pyramid-structure
manner, which provides fine-grained control to the features,
both semantic consistency and texture calibration can be as-
sured. Extensive experiments demonstrated the superiority of
our method over existing state-of-the-art methods.

Index Terms— High dynamic range imaging, image fu-
sion, neural convolution network

1. INTRODUCTION

High dynamic range imaging (HDRI) aims at producing in-
formative and visually-pleasant photos by fusing a set of pho-
tos captured at different exposure levels. It can benefit various
applications, such as photo restoration, and panoramic pho-
tography. Accordingly, this task has been widely researched
and become an active topic of research in recent years [1].
High-quality HDRI usually requires not only texture cali-
bration but also semantic consistency for fused HDR images.
Existing approaches can be divided into two groups. The first
one inspired by texture fusion techniques attempts to fuse the
input LDRs at the pixel level [2, 3, 4, 5]. That is, such ap-
proaches usually compute the weights for each input LDR
pixel-wise, and the fused image would be the weighted sum
of these input images. While the details of images could be
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Fig. 1. Comparisons of image fusion results obtained by dif-
ferent methods. The first row displays two input images at
different exposure levels for fusion. The second row shows
the zoom-in regions of input images and fused results pro-
duced by different methods.

preserved, the lack of a high-level understanding of the im-
age content often makes these approaches hard to maintain
tone, brightness, and semantic consistency of the original in-
put images. To solve this problem, the second group of ap-
proaches proposes to extract features from the semantic con-
text of input images by deep convolutional neural networks
(CNN) and then does feature fusion by stacked convolution
operations [6, 7, 8, 9]. However, it is challenging to gener-
ate high-quality results from compact latent features, as im-
age edges and details would be filtered out or removed by
convolutions and pooling operations. An example of typical
approaches for image fusion is given in Figure 1.

To ensure both texture calibration and semantic consis-
tency, we propose to fuse the input LDRs at both the pixel
and feature levels in a multi-scale fashion. We adopt a U-Net-
like encoder-decoder structure to fuse input LDR images. To
further guide the fusion process, for each layer of the encoder
and decoder, the contents and details of the input images are
broken down in a Gaussian-Laplacian pyramid manner and
attached to the corresponding layers in the encoder and de-
coder. To this end, we present a new network architecture
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with the content prior guided and detail prior guided layers
for fusing LDR images into an HDR image. These layers
are constructed based on the pyramid content prior and the
pyramid detail prior of the LDR images. Our network adopts
deep supervision to guide the training of the fusion network,
whose loss function is multi-scale L2 losses and adversarial
loss. Experiments on an HDR dataset, including several nat-
ural images, demonstrate that our network generates higher-
quality HDR results for the cases of two-exposure image fu-
sion than existing ones. An example result is shown in the last
column of Figure 1. The main contributions of this paper can
be summarized as follows:

e Presenting a encoder-decoder image fusion network
that consists of content prior guided and detail prior
guided layers to fuse LDR images at both the pixel level
and feature level.

e Exploiting a hybrid loss function that considers the
pixel and feature distance to assure fusion quality.

2. RELATED WORK

HDRI by pyramid-based methods. Pyramid-based fu-
sion methods generally compute weight maps to fuse input
images based on the potential contribution of each pixel.
Burt et al. [10] used the Laplacian pyramid to compute the
weight for each pixel based on local energy and correlation
between the pyramid levels. Mertens et al. [2] proposed to
compute the weight maps using quality metrics such as con-
trast, saturation, and well-exposedness. However, the fused
results usually suffer from halo artifacts due to the weights.
To overcome this problem, researchers have tried several ap-
proaches to improve fusion results by employing various fil-
ters to smooth the weighting maps or enhance the image de-
tails. Specifically, Li et al. [4] proposed to use the weighted
guided image filter (WGIF) to smooth the weighting maps
and apply a detail extraction module to refine the image de-
tails. Kou et al. [5] developed an edge-preserving gradient-
domain guided image filter (GGIF) to preserve the edges in
the images. Pyramid-based fusion methods for HDRI can
generate sharp results with rich details. However, it is dif-
ficult to maintain semantic consistency by these methods due
to the lack of a high-level understanding of images.

HDRI by deep learning methods. Deep learning methods
for HDRI encode the input images into feature space, fus-
ing these inputs at the feature-level, and decode the fused
features back into an image. In recent years, impressive re-
sults have been achieved by deep learning methods. In [6],
Prabhakar et al. first adopted deep convolutional neural net-
works (CNN) for two-extreme-exposure fusion, with a non-
reference image quality metric defined in [11] as its loss func-
tion. Chen et al. [7] utilized generative adversarial network
(GAN) framework and proposed context encoder and expo-
sure encoder to capture the context and exposedness features

for obtaining a transferred exposure image. In the HDR fu-
sion GAN, the inputs are then fused into the final HDR image.
These models can produce image with semantic consistency,
however, the fused HDR images are not sharp enough as the
image edges and details are largely lost during the convolu-
tional and pooling operations.

3. METHOD

In this paper, we propose a novel image fusion framework
based on both the pixel-level and feature-level for HDRI fu-
sion. Specifically, we create the CPG and DPG layers in the
framework for better fusing the input LDR images by incor-
porating the features of multi-scale image details. As shown
in Figure 2, our image fusion model consists of three parts: a
CPG encoder, a DPG decoder, and a discriminator. The whole
network is built upon a U-Net-like structure [12], which can
encode two input LDR images in the feature space and decode
the features back to the HDR image. As the compact latent
features are extracted from the semantics of input images in
the CPG encoder, the DPG decoder refines the details to im-
prove the fusion result. The feature maps at each scale in the
decoder are used to compute the multi-scale L2 loss to guide
the fusion process for a better result.

3.1. Network architecture

Content prior guided encoder. The proposed CPG lay-
ers are used in our encoder for semantic content fusion.
Once the original images are transformed into the feature
space, the proposed encoder strengthens the semantic con-
tents by adding the image contents decomposed by the pyra-
mid through the CPG layer at each scale. Concretely, the CPG
layer learns a non-linear mapping function M that outputs se-
mantic feature maps based on the content prior. Given an en-
coder of L layers, the features ¢! produced by /th CPG block
based on given content prior ', are denoted as:

o =r(etod™), vi=MEh, O
where f denotes the convolution operation, and & denotes
feature concatenation. In CPG layers, the learned features
adaptively influence the encoding process by integrating the
pixel-wise content prior to each intermediate feature map in
the fusion network, which substantially improves the seman-
tic coherence in the final fused result.

Detail prior guided decoder. After the latent features from
the CPG encoder are obtained, the image reconstruction is
carried out by the proposed DPG decoder. Similarly, we pro-
gressively integrate feature maps derived from the detail prior
through DPG layers to provide fine-grained control to the fea-
tures. Moreover, the skip connection is also adopted in our
network to ensure structural stability. The /th DPG layer takes
as the input the features from the last layer ¥/~ !, the features
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Fig. 2. Our proposed fusion network is composed of three components: a CPG encoder, a DPG decoder and a discriminator.

First, the input images are encoded into feature space by several convolutions.

The CPG encoder improves the encoding

effectiveness by progressively adding content prior fused at pixel-level through CPG layers. Second, the DPG decoder takes as
input the compact features and provide fine-grained control to features by DPG layers during the decoding process. The whole
network is under deep-supervised learning and optimized using a multi-scale L2 loss and an adversarial loss.

from the encoder ¢~ ~'+1, and the features by detail prior ¢!;,
and operates as follows:

V=@ e et +6h), @

where u denotes the upsampling operation, and L denotes the
total number of layers in the encode part. On one hand, the
features generated by the DPG layer have low-level informa-
tion for detail refinement. On the other hand, the features
obtained from each the DPG block are leveraged for comput-
ing the deep-supervised multi-scale L2 loss to guide training
of the model.

Pixel-wise fused contents and details. We follow the state-
of-the-art approach [2] to conduct pixel-wise fusion and gen-
erate the content and detail prior by the Gaussian-Laplacian
pyramid decomposition. Given an image pair {I LI 2}, the
weighting maps W, i € {1, 2} are first calculated by consid-
ering quality metrics including contrast, saturation and well-
exposedness, as described in [2]. Next, the input images and
weight maps are decomposed using the Gaussian-Laplacian
pyramids.

Let us denote the Guassian pyramids of weighting maps
as G {Wl} and the Laplacian pyramids of input images as
L { I } , the [th level of fused pyramid detail prior is then com-
puted as follows:

oy =Y a{wiy'L{ry. 3)
Vi

For the pyramid content prior, we use the Gaussian pyra-
mids to decompose the input images and the pyramid content
prior is then computed as the weighted sum of each level,

which can be represented as follows:

:ZG{Wi}lG{Ii}’. )

3.2. Loss function

Inspired by [13], we apply a deep-supervised multi-scale L2
loss and an adversarial loss to train our network. The multi-
scale L2 loss is the MSE [14] between the output at each
scale of the DPG decoder and the corresponding resized target
HDR image, which can be described as follows:

iuf

Similar to [13], we use a 1 x 1 convolutional operation to
merge the intermediate features into an image, and the target
HDR image is resized to the same size as that merged image
at each scale. The adversarial loss defined from the GAN [15]
is also employed to reinforce our network to favor the results
in the HDR manifold. The loss is represented as:

Itargel | | 2° (5)

LD = _EllargeleHDR log D (Itﬂrget) +

Erep.pr log (1—D(F(I))>, (6)

4. EXPERIMENTS

The authors from the universities in Taiwan completed the experiments
on the datasets.
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Fig. 3. Qualitative comparisons with other state-of-the-art methods on the SICE database. (a) Under-exposed images, (b)
over-exposed images, (c)-(g) the results produced by the methods of Mertens et al., Kou et al., Li et al., Yang et al., and

Prabhakar et al., respectively, and (h) our results.

4.1. Implementation details

We collect 871 image pairs (i.e., an over-exposed image and
an under-exposed image) from the SICE dataset [16], where
712 pairs are chosen as the training dataset, and the other 159
pairs are used as the validation dataset. For network training,
we used Adam optimizer with a fixed learning rate of 0.0001.
We alternatively optimized our fusion network and the dis-
criminator for 500 epochs. The training process takes about
72 hours on a computer with a single NVIDIA TITAN RTX
GPU.

In the following, we evaluate the proposed method for
two-exposure image fusion for HDR rendering. We first con-
duct qualitative and quantitative assessments for state-of-the-
art methods and the proposed method. Next, we discuss sev-
eral variants of our method.

4.2. Comparisons with other state-of-the-art methods

The qualitative and quantitative comparisons are obtained on
the SICE testing dataset [16]. The compared state-of-the-art
methods include Mertens et al. [2], Li et al. [4], Kou et al. [5],
Prabhakar et al. [6], and Yang et al. [3].

Qualitative comparison. Figure 3 shows the qualitative re-
sults of different image fusion methods. Figure 3 (a) and (b)
are the over-exposed and under-exposed images. Figure 3 (c)
shows Mertens et al.’s results, where the details of the image
are preserved; however, halo artifacts also come out, and the
results fail in maintaining brightness consistency, which is of-

Table 1. Quantitative comparison of state-of-the-art algo-
rithms for two-exposure fusion

TMQI
Method Q | Fidelity | Naturalness
Mertens et al. [2] 0.7904 | 0.6311 0.4587
Kou et al. [5] 0.7989 | 0.6563 0.5497
Liet al. [4] 0.7916 | 0.6702 0.4367
Yang et al. [3] 0.8054 | 0.6665 0.5147
Prabhakar er al. [6] | 0.7887 | 0.6600 0.4264
Ours 0.8056 | 0.6618 0.5618

ten inevitable for most existing pixel-level fusion algorithms.
The Kou et al.’s and Li et al.’s methods employ filters to
smooth the weighting maps to avoid the halo artifacts. How-
ever, Kou et al.’s results are under-exposed [see Figure 3 (d)]
while Li er al.’s results are over-exposed [see Figure 3 (e)].
Yang et al.’s method generates an additional intermediate im-
age at a medium exposure level for fusion. This method im-
proves the brightness consistency; however, the results some-
times are unsatisfying because the intermediate image gener-
ated based on the intensity estimation function does not al-
ways lead to a better fusion result. The color distortions and
artifacts occur in the results of Figure 3 (f). From Figure 3 (g),
although we can see the improvement in terms of brightness
consistency. Moreover, the details are blurred, and the color
looks faded in the results. By contrast, the proposed fusion
network can produce better results with consistent brightness
and calibrated details, as shown in Figure 3 (h).



Fig. 4. Qualitative comparisons with other state-of-the-art methods on SICE database. (a) input under-exposed image, (b) input
over-exposed image, (c)-(e) the results produced by architecture of a simple encoder-decoder, the CPG encoder-decoder, the

encoder-DPG decoder, respectively, and (f) our results.

Table 2. Quantitative comparison of state-of-the-art algo-
rithms for two-exposure fusion

TMQI
Method Q [ Fidelity | Naturalness
Encoder-decoder 0.7272 | 0.5755 0.3300
CPG encoder-decoder 0.7781 | 0.6105 0.4515
Encoder-DPG decoder 0.8014 | 0.6113 0.5767
CPG encoder-DPG decoder | 0.8056 | 0.6618 0.5618

Quantitative comparison. We also conduct a quantitative
comparison using the testing dataset. The Tone Mapping
Quality Index (TMQI) [17], which evaluates an HDR image
by computing the multi-scale signal fidelity and naturalness
of the image, is used as the metric to quantify the results of
each method. As we can see in Table 1, Prabhakar et al.’s
method achieves the lowest Q value among all the compared
methods. The low Q value is mainly because of the low nat-
uralness value caused by the blurred results. Mertens et al.’s
method has a higher Q value but has the lowest Fidelity due
to the artifacts, as mentioned earlier. The Kou et al.’s and
Li et al.’s methods improve the performance in terms of Q
value by employing filters to avoid artifacts. In contrast, our
method achieves the highest Q value by simultaneously satis-
fying semantic consistency and texture calibration.

4.3. Analysis

To further validate the superiority of the proposed method, we
analyze the effectiveness of different components of the pro-
posed network by visualizing the performance or quantitative
comparison as follows.

Effectiveness of CPG encoder and DPG decoder. To verify
the effectiveness of the proposed CPG and DPG layers, we ex-
periment to isolate the effect of these two layers. Specifically,
we construct a fusion network with a simple encoder-decoder
structure, a CPG encoder-decoder structure, and an encoder-

Fig. 5. Results produced by the DPG decoder at each scale.
(a) The input images, (b) from the left to right and top to
bottom: images produced by the first to the last DPG block in
the decoder.

DPG decoder structure, respectively. We train the three net-
works using the same training dataset with the proposed loss
function.

Figure 4 shows some examples of these variations. As we
can see in Figure 4 (c), the simple Encoder-Decoder structure
generates blurry results. Using the CPG layers in the encoder
gives better results, but the results are still little blurry, and
the image details are missing. For the structure with the DPG
decoder, as can be seen in Figure 4 (e), adding the detail prior
renders much sharper edges and finer details, but introduces
undesired visual artifacts. In contrast, using both the CPG en-
coder and DPG decoder reduces these artifacts and produces
more vivid results with rich and informative details [see Fig-
ure 4 (f)].

We also quantify these observations using the TMQI met-
ric on the SICE testing dataset, as reported in Table 2. The
simple encoder-decoder network achieves the lowest scores,
indicating that the fused images include few image details.
The CPG encoder-decoder network has higher scores due to
the addition of content prior. Adding the DPG layers brings
fine-grained control to the features, and the encoder-DPG
decoder outperforms the encoder-decoder network and CPG
encoder-decoder network in terms of the Q value. Combing



both CPG encoder and DPG decoder works the best with the
highest Q value.

Effectiveness of multi-scale L2 loss. The multi-scale L2
loss is used to refine the output in the proposed decoder. We
demonstrate the effectiveness of multi-scale loss by visualiz-
ing the predictions of the decoder in each scale. Figure 5 de-
picts a qualitative example of results produced by each block
in the decoder. As can be seen in Figure 5 (b), the result of
each layer looks more natural and sharper as it gets closer to
the last layer.

S. CONCLUSIONS

In this paper, we propose a CPG encoder-DPG decoder net-
work to generate results with calibrated texture and consistent
semantic for image fusion. The proposed network improves
the encoding and decoding effectiveness by adding the con-
tent and detail prior fused at the pixel-level in a pyramid path-
way. The extensive experimental results show the efficiency
and superiority of the proposed network.
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