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ABSTRACT
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of text, about 0.5 inch (12 mm) below the title area and no
more than 3.125 inches (80 mm) in length. Leave a 0.5 inch
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submitted electronically along with the paper cover sheet. All
manuscripts must be in English, printed in black ink.
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1. INTRODUCTION

High dynamic range imaging (HDRI) techniques aim at pro-
ducing informative and visually-pleasant photo by fusing a
set of photos captured at different light conditions. This task
has been widely researched and become an active topic since
HDRI techniques can benefit various applications such as
photo restoration and enhancement.

High-quality HDRI usually requires not only texture cal-
ibration but also semantic consistency for fused HDR image.
Existing approaches can be roughly divided into two groups.
The first group inspired by texture fusion techniques attempts
to fuse the input LDRs at pixel level [X-X]. Specifically, such
approaches usually compute the weights for each input LDR
in pixel wise and the fused image would be the weighted sum
of these input images. While the details of images can be
well-preserved, the lack of high-level understanding for the
image content makes such approaches often fail in maintain-
ing brightness and semantic consistency. To solve this prob-
lem, the second group of approaches proposes to encode the
semantic context of input images into feature space by deep
convolutional neural networks (CNN) and then conduct fea-
ture fusion by stacked convolution operations [X-X]. How-
ever, it remains challenging to generate high-quality results
from a compact latent feature, as the image edges and details
can be usually smoothed by convolutions and pooling opera-
tions. An example of typical approaches for image fusion is
given in Figure 1.

To ensure both texture calibration and semantic consis-
tency, we propose to fuse the input LDRs at both pixel and
feature levels in a progressive multi-scale fashion. First, we
adopt a U-Net-like encoder-decoder network as backbone to
encode the input LDRs into high-level features and decode
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Fig. 1. Typical approaches for image fusion. The first row dis-
plays two input images at different exposure levels for fusion.
The second row shows the zoom-in regions of input images
and results produced by different methods. Pixel-level based
method of Mertens et al. ensures texture details but fails in
maintaining semantic consistency, while feature-level based
method of Prabhakar er al. produces semantic-coherent im-
age with smoothed details. Compared with these methods,
our approach can satisfy both texture calibration and seman-
tic consistency.

the features back into an image. Second, once the features
have been encoded from images, the contents and details of
images are added to the features in a pyramid pathway during
the encoding and decoding process, respectively. To this end,
we present a new approach known as Content Prior Guided
(CPG) and Detail Prior Guided (DPG) that are capable of al-
tering the behavior of a fusion network through transform-
ing the features of some intermediate layers of the whole net-
work. Specifically, the CPG and DPG layers are conditioned
on pyramid content prior and pyramid detail prior of the im-
age fused at pixel-level, respectively. Third, our proposed
network architecture naturally accommodates deep supervi-
sion to guide the training of fusion network. The network is
under deep supervision and optimized by pyramid L2 losses
and adversarial loss.

To the best of our knowledge, the proposed fusion net-
work is the first work that is able to fuse images at both pixel-
level and feature-level. The main contributions of this paper
can be summarized as follows:

e A novel image fusion network which consists of a con-



tent prior guided encoder and a detail prior guided in-
volved decoder is proposed to fuse the images at both
pixel level and feature level.

e A hybrid loss that measures the pixel distance and fea-
ture distance is employed to train our network on pixel
level and feature level.

2. RELATED WORK

HDRI by pyramid-based methods. Pyramid-based meth-
ods aim to compute the proper weights for each input image
based on the potential contribution of each pixel. Burt et al.
[X] used Laplacian pyramid to compute the weights for each
pixel by local energy and correlation between the pyramids
levels. Mertens et al. [X] proposed to compute the weights
using simple quality metrics such as contrast, saturation, and
well-exposedness. However, this suffers from halo artifacts
due to the weights. To overcome this problem, a number of
approaches try to improve the fusion performance by employ-
ing various filters to smooth the weighting maps or enhance
the image details. Specifically, Li et al. [X] proposed to use
weighted guided image filter (WGIF) to smooth the weight-
ing maps and apply a detail extraction module to refine the
image details. Kou et al. [X] developed an edge preserving
gradient domain guided image filter (GGIF) to preserve the
edges in the images. Pyramid-based methods for HDRI are
able to generate sharp results with rich details. However, it is
difficult to maintain semantic consistency by these methods
due to the lack of high-level understanding of images.

HDRI by deep learning methods. Deep learning methods
for HDRI encode the input images into feature space, fusing
these inputs at the feature-level, and decode the fused features
back into an image. In recent years, impressive results have
been achieved by deep learning methods. In [X], Prabhakar
et al. first adopted deep convolutional neural networks (CNN)
for two-extreme-exposure fusion, with a non-reference im-
age quality metric defined in [X] as loss function. Chen et
al. [X] utilized generative adversarial network (GAN) frame-
work and proposed context encoder and exposure encoder to
capture the context and exposed ness features for obtaining a
transferred exposure image. In the HDR fusion GAN, the in-
puts are then fused into the final HDR image. These models
can produce image with semantic consistency, however, the
fused HDR images are not sharp enough as the image edges
and details are largely lost during the convolutional and pool-
ing operations.

3. METHOD

In this paper, we propose an image fusion framework based
on both pixel-level and feature-level for the task of multiple
exposure fusion. Specifically, we construct CPG layers and

DPG layers to alter the convolutional operations in the fu-
sion network through transforming the features of multi-scale
image details. As shown in Fig.2, our image fusion model
consists of three parts: a CPG layer involved encoder, a DPG
layer involved decoder, and a discriminator. The whole net-
work is built upon a U-Net structure, which can encode the
input LDRs into feature space and decode the fusion features
back into the final HDR image. As the compact latent fea-
tures encode the semantics of the input image in the content
encoder, the pyramid-detail decoder further improves the fu-
sion effectiveness by refining the details. The feature maps at
each scale in the decoder are used to compute multi-scale Lo
loss for further refine the prediction output.

3.1. Network architecture

Encoder. In order to improve the effectiveness of encoding,
the CPG layer based encoder is proposed for semantic con-
tent fusion before decoding. Once the original images are
mapped into the feature space, the proposed encoder strength-
ens the semantic contents by adding pyramid-decomposed
image contents through CPG layer at each scale. Specifically,
the CPG layer learns a mapping function M that outputs se-
mantic feature maps based on content prior. Given an encoder
of L layers, the features ¢' produced by /th CPG block based
on given content prior ¢, are denoted as:

o' =fWleeh), Yl=DM). (1)

Where f denotes the convolution operation, and & denotes
feature concatenation. By CPG layers, the learned features
maps adaptively influence the encoding process by integrating
pixel-wise content prior to each intermediate feature maps in
the fusion network, which substantially improves the seman-
tic coherence in the final fused results.

Decoder. After the latent features from the encoder are ob-
tained, the image reconstruction is carried out by the pro-
posed decoder. Similarly, we progressively integrate feature
maps derived from the detail prior through DPG layer to pro-
vide fine-grained control to the features. Moreover, the skip
connection is also adopted in our network to ensure structure
stability. Hence, the [th DPG layer takes as input the fea-
tures from the last layer 91, the features from the encoder
¢L 1%, and the features by detail prior ¢!}, and operates as
follows:

O = fu@' ) @ et @ l), vh= M), (@)

Where u denotes the unsampling operation, and L denotes the
total number of layers in the encode part. On one hand, the
features generated by DPG layer encode more low-level infor-
mation for detail refinement. On the other hand, the features
obtained from each DPG block are leveraged for computing
the deep-supervised pyramid Lo loss to train the network.

Pixel-wise fused contents and details as prior. We follow
the state-of-the-art approach [X] to conduct pixel-wise fusion
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Fig. 2. Our proposed fusion network is composed of three components: encoder, decoder and discriminator. First, the input im-
ages are encoded into feature space by several convolutions. The encoder improves the encoding effectiveness by progressively
adding content prior fused at pixel-level through CPG layers. Second, the decoder takes as input the compact features and pro-
vide fine-grained control to features by DPG layers during the decoding process. The whole network is under deep-supervised
learning and optimized using a pyramid L2 loss and an adversarial loss.

and generate the content and detail prior through pyramid
decomposition. Given an image pair {I',I?}, the weight-
ing maps W¢ i € {1,2} are first calculated by consider-
ing quality metrics including contrast, saturation and well-
exposedness as described in [X]. Then the Gaussian pyramids
and the Laplacian pyramids are employed to decompose the
weighting maps and input images, respectively. Let us denote
the Guassian pyramids of weighting maps as G { W'} and the
Laplacian pyramids of input images as L {I'}, the Ith level
of fused pyramid detail prior is then computed as follows:

oy =Y c{wiyL{ry. 3)
Y4

For the pyramid content prior, we use the Gaussian pyra-
mids to decompose the input images and the pyramid content
prior is then computed as the weighted sum of each level,
which can be represented as follows:

:ZG{Wi}lG{ﬂ}l. 4)

3.2. Loss function

Inspired by [X-X], we apply a deep-supervised pyramid L2
loss and an adversarial loss to train our network in pixel
space and feature space, respectively. The pyramid L2 loss
measures the MSE distance between the output from each
DPG block and the corresponding resized target HDR image,
which can be described as follows:

L
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Similar to [X], we use a 1 x 1 convolutional operation to de-
code the features into an image, and the target HDR image
is resized into the same size with the decoded image at each
scale.

The adversarial loss defined from GAN [X] is also em-
ployed to force the fusion network to favor the results in the
HDR manifold, the loss is represented as:
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5. TYPE-STYLE AND FONTS

To achieve the best rendering both in the proceedings and
from the CD-ROM, we strongly encourage you to use Times-
Roman font. In addition, this will give the proceedings a more
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Fig. 3. Example of placing a figure with experimental results.

The first paragraph in each section should not be indented,
but all following paragraphs within the section should be in-
dented as these paragraphs demonstrate.

6. MAJOR HEADINGS

Major headings, for example, “1. Introduction”, should ap-
pear in all capital letters, bold face if possible, centered in the
column, with one blank line before, and one blank line after.

@

Use a period (““.”) after the heading number, not a colon.

6.1. Subheadings

Subheadings should appear in lower case (initial word capi-
talized) in boldface. They should start at the left margin on a
separate line.

6.1.1. Sub-subheadings

Sub-subheadings, as in this paragraph, are discouraged. How-
ever, if you must use them, they should appear in lower case
(initial word capitalized) and start at the left margin on a sepa-
rate line, with paragraph text beginning on the following line.
They should be in italics.

7. PAGE NUMBERING

Please do not paginate your paper. Page numbers, session
numbers, and conference identification will be inserted when
the paper is included in the proceedings.

8. ILLUSTRATIONS, GRAPHS, AND
PHOTOGRAPHS

[lustrations must appear within the designated margins. They
may span the two columns. If possible, position illustrations
at the top of columns, rather than in the middle or at the bot-
tom. Caption and number every illustration. All halftone il-
lustrations must be clear black and white prints. Do not use
any colors in illustrations.

Table 1. Table caption
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Cell 4 Cell 5 Cell 6

Since there are many ways, often incompatible, of
including images (e.g., with experimental results) in a
ETEXdocument. Figure 3 shows you an example of how to
do this.

9. TABLES AND EQUATIONS

Tables and important equations must be centered in the col-
umn. Table 1 shows an example of a table while the equation
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shows an example of an equation layout.

Large tables or long equations may span across both
columns. Any table or equation that takes up more than one
column width must be positioned either at the top or at the
bottom of the page.

10. FOOTNOTES

Use footnotes sparingly (or not at all!) and place them at the
bottom of the column on the page on which they are refer-
enced. Use Times 9-point type, single-spaced. To help your
readers, avoid using footnotes altogether and include neces-
sary peripheral observations in the text (within parentheses, if
you prefer, as in this sentence).

11. CITATIONS AND REFERENCES

List and number all bibliographical references at the end of
the paper. The references can be numbered in alphabetic order
or in order of appearance in the document. When referring to
them in the text, type the corresponding reference number in
square brackets as shown at the end of this sentence [3]. All
citations must be adhered to IEEE format and style. Examples
such as [3], [4] and [5] are given in Section 12.
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